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A nonlinear dynamical system in a chaotic state is very sensitive to errors. Inherent noise in physical systems
gives rise to difficulties for stabilizing chaotic systems onto desired unstable periodic orbits, particularly with
large eigenvalues. The idea of adjusting the system state more frequently to eliminate error deviations from a
desired orbit is utilized and given in variational form for flows. This control scheme acting on multiple sections
can cope with relatively large noise levels. A Duffing oscillator and a parametrically excited pendulum are used
in numerical studies. The relationship between controllable noise levels and the number of control sections is
discussed.@S1063-651X~96!05409-8#

PACS number~s!: 05.45.1b

I. INTRODUCTION

The control of chaos has attracted much attention follow-
ing the seminal article of Ott, Grebogi, and Yorke~OGY!
@1#. This method has the ability to stabilize a desired orbit
chosen from the many unstable periodic orbits coexisting
with a chaotic attractor, without changing the global configu-
ration of the system, which makes the OGY method different
from previous methods@2–4#. In recent years, a number of
different methods have been developed@5–18# motivated by
the OGY method, many of which have been physically
implemented; e.g., for driven beams@19#, lasers @20,21#,
electronic circuits@22#, chemical reactions@23#, communica-
tions @24#, and even for biological systems@25,26#.

A nonlinear system in the chaotic state is very sensitive to
initial conditions, particularly in chaotic systems with large
Lyapunov exponents, see@14,17#, such that a tiny error may
lead to failure of a control process with errors amplified ex-
ponentially with time. Linearization of a nonlinear system in
control, inaccuracy of experimental measurement, and a
noisy environment all introduce errors into a control process.
Considering the stabilization of an unstable periodic orbit
embedded within an attractor, the growth, given bye~t!, of
an errore~0! to the unstable periodic orbit is dominated by
the unstable eigenvalueslu of the orbit and the timet, i.e.,

e~t!;e~0!exp~lut!. ~1!

Figure 1 demonstrates a numerical example of the expansion
of an error near an unstable periodic orbit in a parametrically
excited pendulum@14#. Here e~t! is defined by a distance
from the unstable periodic orbit. The numerical computation
shows that the errore~t!, at the timet5332p, is about 160
times larger than the initial errore~0!50.01 in only one re-
current timeT ~within which an orbit starts from an initial
point and returns back to the same point, hereT5332p! of
the unstable period-3 orbit. This feature of rapid enlargement
of errors in chaotic systems gives rise to additional difficul-
ties during control.

A number of present methods@1,5,6,9–16# modify con-
trol parametersonceeach Poincare´ return time. For the con-
trol of systems with large Lyapunov exponent or high-order

unstable periodic orbits, tiny errors introduced may ‘‘kick’’
the system state out of its controllable region. Therefore, the
key observation is that the control interval must be reduced
to decrease the time for errors to grow. Thus control must be
more frequently applied to adjust the system state eliminat-
ing error deviations from a desired orbit before the errors
grow too large. This idea was first used in the control of
chaos by Hu¨bingeret al. @18#. Here this idea is linked with a
one-step optimal control scheme@11# and given in a varia-
tional form. The relationship between the number of control
sections and controllable noise levels is investigated.

II. CONTROL ON MULTIPLE SECTIONS

In general, a continuous-time nonlinear dynamical system
may be written as

ẋ5f~x,p!, xPRn, pPRm, ~2!

where x is a vector of state variables andp a set of the
parameters, such that at settingp5p* , the system~2! under-
goes a chaotic motion. There are typically an infinite number
of unstable periodic orbits embedded within the chaotic
motion @1#. An unstable periodic orbit satisfiesx* (t)
5x* (t1T), whereT is a recurrent period of the orbit. The
motivation here is thatx* ~t! can be viewed as an unstable
period-K orbit havingK fixed pointsjk* (k51,2,...K) in the
space(KG (k)PP. Here G(k) is one of the ‘‘stroboscopic’’
sections sampled in the phase spaceP with a t time interval;
see Fig. 2~a!. Thus the following relations must hold:

jk*5x* ~ t !, t5t01kt, k51,2,...K, Kt5T, ~3!

wherejk*PG (k) andx* (t)¹G (k) for tÞt01kt, andt0 is ini-
tial time; see Fig. 2~b!. In the full spaceP, there exists a map
F that satisfies the relations below for aK-periodic orbit,

jk11* 5F~jk* ,p* !, j1*5F~jK* ,p* ! ~4!

and for any mapping pointjiPP,

j i115F~j i ,p* !. ~5!
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Let x~t;x0;p* ! be a solution of~2! at time t with initial
conditions~t0,x0,p* !. Hereji corresponds to the chaotic time
seriesx~t;x0;p* ! on the spaceP. When ji falls within a
neighborhoodV of one of the fixed pointsjk* , a one-step
optimal control scheme@11# can be applied to stabilizeji11

onto the fixed pointjk11* by perturbing the parameterp dur-
ing the interval fromi to i11.

dpi5akdj i ~k51,2,...,K !,

dj i5j i2jk* ,

ak52„Dp
TF~jk* ,p* !DpF~jk* ,p* !…21Dp

TF~jk* ,p* !

3DjF~jk* ,p* !, ~6!

whereDjF(jk* ,p* ) is the Jacobian of the Poincare´ mapF,
andDp

TF(jk* ,p* ) denotes the differential of the mapF with
respect to the parameterp. The superscriptT denotes the
transpose of a matrix as usual.

To apply~6!, a variational method can be used to compute
the discrete-time seriesji , jiPP, the mapF~ji!, the Jacobian
DjF(jk* ,p* ), and the matrixDpF(jk* ,p* ). Let x~t;x0;p* ! be
a solution of~2! so that

ẋ~ t;x0 ;p!5f„x~ t;x0 ;p* !,p* …, x~ t0 ;x0 ;p* !5x0 . ~7!

Differentiate~7! with respect tox0 to obtain

Dx0
ẋ~ t;x0 ;p* !5Dxf„x~ t;x0 ;p* !,p* …Dx0

x~ t;x0 ;p* !,

Dx0
x~ t0 ;x0 ;p* !5I . ~8!

Let X(t;x0 ;p* )5Dx0
x(t;x0 ;p* ) and f~x,p* ! denote

f„x(t;x0 ;p* ),p* … then Eq.~8! becomes

Ẋ~ t;x0 ;p* !5Dxf~x,p* !X~ t;x0 ;p* !, X~ t0 ;x0 ;p* !5I .
~9!

Differentiate~7! with respect top* to obtain

Dp* ẋ~ t;x0 ;p* !5Dxf„x~ t;x0 ;p* !,p* …Dp*x~ t;x0 ;p* !

1Dpf„x~ t;x0 ;p* !,p* … ~10!

with the initial condition Dp*x(t0 ;x0 ;p* )50. Let
U(t;x0 ;p* )5Dp*x(t;x0 ;p* ) so that

U~ t;x0 ;p* !5Dxf~x,p* !U~ t;x0 ;p* !

1Dpf~x,p* !, U~ t0 ;x0 ;p* !50. ~11!

Putting Eqs.~7!, ~9!, and~11! together forms a set of coupled
differential equations given by

H ẋ~ t;x0 ;p* !

Ẋ~ t;x0 ;p* !

U̇~ t;x0 ;p* !
J 5H f~x,p* !

Dxf~x,p* !X~ t;x0 ;p* !

Dxf~x,p* !U~ t;x0 ;p* !1Dpf~x,p* !
J ,

H x~ t0 ;x0 ;p* !

X~ t0 ;x0 ;p* !

U~ t0 ;x0 ;p* !
J 5H x0I

0
J . ~12!

The continuous time seriesx~t;x0;p* !, X~t;x0;p* !, and
U~t;x0;p* ! can be calculated by integrating~12! from the
initial conditionx~t0;x0;p* !5x0PP. Thus the mapping point
ji , map F~ji ,p* !, Jacobian DjF(jk* ,p* ), and matrix
DpF(jk* ,p* ). jiPP, can be written as follows:

j i5x~ i t;x0 ;p* !, ~13!

F~j i ,p* !5x~t;j i ;p* !, ~14!

DjF~j i ,p* !5X~t;j i ;p* !, ~15!

DpF~j i ,p* !5U~t;j i ;p* !. ~16!

When x0Px* (t) and x05j1*PG (1)PP, then x05j1* is a
fixed point on the sectionG~1! such that the fixed points
jk* , F(jk* ,p* ), DjF(jk* ,p* ), andDpF(jk* ,p* ) can, respec-
tively, be determined by~13!, ~14!, ~15!, and ~16!. In the
numerical procedure, the coupled differential Eq.~12! is in-
tegrated with at interval from a fixed pointjk* on the section

FIG. 1. A numerical example of an unstable oscillating period-3
orbit of a parametrically excited pendulum is illustrated.~a! The
periodic orbit in the phase portrait starts from the initial point at
~22.512 660 4, 0.065 017 1! marked by* . An error of ~0.01, 0.01!
occurring at the initial point leads to a large deviation~dotted curve!
from the unstable periodic orbit~solid curve!. ~b! The small error
increases exponentially with timet.
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G(k). After a t interval of integration, the trajectory
x(t;jk* ;p* ) intersects with the sectionG(k11) at the fixed
point jk11* and the quantities in~14!, ~15!, and ~16! can be
sequentially obtained. Therefore, the feedback control~6!
can be applied at eacht interval on the spaceP.

As the number of control sectionsK in ~3! increase, the
control time interval decreases within an orbit periodT. Thus
the variational algorithm can apply the perturbationdp more
often ~K times! than once each periodT, such that the influ-
ence of the errors is diminished in eacht interval ~t,T!. A
nontrivial benefit is that control input is renewed frequently
to correct the state of the system onto a desired orbitx* (t),
resulting in an increase in the ability to stabilize highly un-
stable periodic orbits even in the presence of relatively large
noise inputs.

III. NUMERICAL SIMULATIONS

To apply the new control scheme, the well-known Duff-
ing oscillator is considered, which can be written in the form

ẋ5y,

ẏ52cy10.5x~12x2!1b cos~vt !,

ṫ51. ~17!

Figure 3 shows a chaotic attractor of the Duffing oscillator
when parameters are set atc50.15, b50.15, andv50.8.
The mapping points are stroboscopically sampled at an inter-
val of 2p/v ~the driving period! from a single chaotic trajec-
tory in phase space. An unstable period-5 orbit is indicated
by five fixed points marked by the symbol* , which is em-
bedded within the attractor. The forcing amplitudeb is cho-
sen as a control parameter.

In the absence of noise, a chaotic motion of the Duffing
oscillator can be stabilized onto the unstable period-5 orbit
~the unstable eigenvalue here is 23.3! by only setting one
control section~i.e., K51! in each recurrent time~T510p/
v! of this orbit. Figure 4 demonstrates the control process
plotting the trajectory just before and just after the control in

FIG. 2. Three ‘‘stroboscopic’’ sections set within a periodT of an unstable periodic orbitx* (t) with t5T/3. ~a! The periodic orbitx* (t)
~thick curve! successively intersects the sectionsG(k) at pointsjk* , ~k51,2,3!. Aroundjk* , a valid linearized region is marked byV. A small
errore~0! may cause a large deviation~denoted by the thin curve! from x* (t) at t5T, where thee(T) places the system state outsideV, but
not at t5t. ~b! Three fixed pointsj1* , j2* , j3* in the phase spaceP indicate a period-3 orbit in the sense of a period beingt.
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x and y againstt. The stabilized system state follows the
unstable period-5 orbit that can be viewed in the phase por-
trait; see Fig. 4~c!.

To examine the efficiency of the new control scheme, first
we consider a simple case regarding the effect of a constant
error. A typical example is carried out to show the relation-
ship between the maximum controllable error and the num-
berK of control sections in the stabilization of the unstable
period-5 orbit; see Fig. 5. For simplicity, here an error is
added only to the variabley once every recurrent time
T510p/v of the periodic orbit. For the chosen number of
sectionsK, we increase the value of the error until the con-
trol fails, giving the maximum controllable error. In Fig. 5,
the maximum controllable errors are indicated by the point
s corresponding to the number of control sections asK is
varied. As can be seen, forK51, the maximum controllable
error was found to be 0.0008. Initially the ability to cope
with errors in the control is enhanced as the numberK of
control sections increases. AfterK56, the curve tends to
flatten off and the maximum controllable error is up to about
0.26 in this specific stabilization. The one-step optimal
scheme@11# is based on linearization, and consequently the
error at this level may place the system state on the margin of
the valid linearized neighborhood of the orbit. In this con-
text, a further increase in the number of control sections will
achieve no benefit. The maximal controllable error is re-
stricted by the size of the linearized neighborhood of the
orbit.

To further illustrate the effectiveness of control on mul-
tiple sections, we investigate a complicated situation of con-
trol in the presence of noise. Assume that noise is acting like
a sequence of impulses whose amplitude and impulse fre-
quency are both normally distributed. A time series of noise
will thus be input into the variablesx and y at irregular
intervals. We will study the case of stabilizing a chaotic state

FIG. 3. A chaotic attractor of the Duffing oscillator described in
Eq. ~17!, c50.15,b50.15, andv50.8, is plotted by 2000 mapping
points, which are stroboscopically sampled at intervals of 2p/v
from a single chaotic trajectory in phase space. Five fixed points of
an unstable period-5 orbit that is embedded within the attractor are
indicated by the symbol* . The locations of the fixed points are
j1*5(20.859 167 580, 0.192 828 460), j2*5(20.477 363 565,
0.345 571 833), j3*5(1.063 321 87,20.032 301 406 9), j4*
5(1.027 517 16, 0.409 679 492), j5*5(20.729 448 553,
20.316 140 592).

FIG. 4. A chaotic motion of the Duffing oscillator is stabilized
onto the unstable period-5 orbit~with unstable eigenvalue 23.3!
after t5392. The stabilization is carried out in the absence of noise
using control once~i.e., K51! in each recurrent time~10p/v! of
this orbit. ~a! The controlled trajectory inx againstt; ~b! the con-
trolled trajectory iny againstt; ~c! the phase portrait of the unstable
period-5 orbit.

FIG. 5. An example of the relationship between the controllable
errors and the numberK of control-sections in the stabilization of
an unstable period-5 orbit. The symbols indicates the maximum
controllable error corresponding to the number ofK of control sec-
tions.
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onto the unstable period-5 orbit. The system state is dis-
turbed by noise to the level of approximately 7% of the size
of the periodic orbit~the maximum amplitude of noise is
bounded inx within 0.1 and iny within 0.033!.

For such levels of noise, the stabilization, in general, fails
whenK,5. Figure 6~a! shows the case~K55! in which the
control is switched on aftert5392, and the chaotic trajectory
is stabilized onto the period-5 orbit, but the control is unsuc-
cessful at t51350 and t51520, where the system state
moves off from the periodic state into the chaotic state. A
mapping series of the variablex sampled each recurrent time
~10p/v! shows a longer time scale of the control process in
Fig. 6~b!. The dense points lining up along the horizontal
axis indicate that the system state stays on the periodic orbit.
However, the control loses robustness somewhere during
t51350–2200 in which the mapping points separated from
the dense point line indicate bursts of chaotic motion. Con-

trol using the settingK55 cannot suppress chaos completely
since the noise impulses can still move the system state away
from the stabilized periodic orbit at some time.

Using the same conditions as above, but with the setting
changed toK512, the system state is stabilized onto the
period-5 orbit successfully, see Fig. 7, without significant
chaotic bursts. In numerical simulations, the cases ofK56,
7, 8, 9, and 10 were also tried, indicating that chaotic bursts
cannot be completely excluded but decrease asK increases.

The new method has also been applied to the parametri-
cally excited pendulum described by

ü1cu̇1~11p cosvt !sinu50. ~18!

When the parameters are set atc50.1, p52, andv52, the
system behaves chaotically with many unstable periodic or-
bits embedded within the chaotic motion; some possess large
eigenvalues~100’s, 1000’s!; see@14#. Here the parameterv
is used as a control parameter.

FIG. 6. Stabilization of the chaotic motion of the Duffing oscil-
lator onto an unstable period-5 orbit in the presence of noise using
five control sections~K55!. The control is switched on after
t5392.~a! In the time series of the variablex, the chaotic trajectory
is stabilized onto the periodic orbit, but the control is unsuccessful
at t51350 andt51520, where the system state is ‘‘kicked’’ by the
noise off the periodic state into the chaotic state.~b! A mapping of
the variablex sampled each recurrent time~10p/v! of the periodic
orbit shows a longer time scale of the control process. The dense
points along the horizontal indicate that the system state stays on
the periodic orbit. Duringt51350–2200 the separated mapping
points apart from the dense points indicate bursts of chaotic mo-
tions.

FIG. 7. Stabilization of the chaotic motion of the Duffing oscil-
lator onto a unstable period-5 orbit in the presence of noise using 12
control sections~K512!. The control is switched on aftert5392. A
mapping of the variablex sampled each recurrent time~10p/v! of
the periodic orbit shows a successful control process. The dense
points parallel to the horizontal axis indicate that the system state
stays close to the periodic orbit.

FIG. 8. The relationship betweenr ~the controllable noise level!
andK ~the number of control sections! with the restriction of the
parameter perturbation set atudvu,0.5. This result is based on the
control of the period-4 orbit of the parametrically excited pendu-
lum, where the points~marked by the symbol3! indicate the maxi-
mum controllable noise levels.
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In the presence of noise, which is added to both variables
~the angularu and the angular velocityu̇!, the stabilization of
an oscillating unstable period-4 orbit, whose largest ampli-
tude of the eigenvalue is2562.3, is investigated. A relation-
ship between the controllable noise levelsr and the number
K of control sections is shown in Fig. 8. The points marked
by 3 joined by lines indicate the maximum controllable
noise levels corresponding to the number of sectionsK. In all
simulations, the initial condition of the system state is the
same starting from the point~22.474 21, 0.085 205! and the

parameter perturbation is boundedudvu,0.5, which will be
set to zero ifudvu exceeds this value. As can be seen, when
K51, the controllable noise levelr is less than 0.0001,K52,
r50.0005,K53, r50.004, and so on. For the orbit de-
scribed, the highest noise levelr50.044 can be controlled
with K515, which is about four times that of the achievable
level for K54. Selecting the proper number of control sec-
tions can greatly enhance the ability to cope with noise. Note
that the controllable noise level, in general, decreases as the
number of sections increases afterK515. One possible rea-
son is that when the number of sections increases, the time
for control is shortened, while directing a trajectory onto the
desired orbit requires larger perturbations if the time interval
for control is less. When the required perturbation exceeds its
bounded value, the perturbation will be set to zero~which is
not the required quantity for the correct control!. Thus incor-
rect control inputs may result in failure of the control at
certain levels of noise. In other numerical studies~not re-
ported here!, the pattern of this relationship betweenr andK
is roughly similar when the perturbation is limited toudvu
,1.0, but the controllable noise level is higher. Using differ-
ent segments of a noise time series~but with the same level!
produces some differences, but the relationship betweenr
andK remains qualitatively similar.

In Fig. 9, an example of stabilizing the unstable period-4
orbit is shown where the noise levelr is 0.03, using 12
control sections~K512! with a restriction on the perturba-
tions of udvu,0.5. In the phase space, the orbit is ‘‘fuzzy’’
due to the effects of noise, see Fig. 9~a!. Figure 9~b! demon-
strates the required parameter perturbations, which is re-
newed every control intervalt5p/3. The orbit is sampled on
the 12 control sections and the mapping points are plotted in
Fig. 9~c!, which indicates a longer time scale for the stabili-
zation.

IV. CONCLUSION

In chaotic systems, an error can be expanded at an expo-
nential rate with time such that small errors or noise inputs
can easily affect a control process of stabilizing unstable pe-
riodic orbits. The idea of reducing the time for errors to grow
by increasing control sections is powerful to cope with this
issue, particularly when the orbits possess large eigenvalues.
This paper links the concept of multiple sections with the
one-step optimal scheme@11# given in a variational formu-
lation applicable to flows. The relationship between the num-
ber of control sections and controllable noise levels is inves-
tigated. Numerical simulations show that the proposed
scheme can significantly enhance the ability to cope with
noise in the stabilization of unstable periodic orbits, even
those that have large eigenvalues.
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